Dor fantasma em amputados de membro inferior como fator preditivo de aquisição de marcha com prótese

Phantom pain in lower limb amputees as a predictive factor for the acquisition of gait with prosthesis use

Karla Barros Bezerra Lima¹, Therezinha Rosane Chamlian², Danilo Masiero³

RESUMO
A reabilitação do paciente amputado obedece a algumas fases: avaliação geral do paciente, reabilitação pré-protética e reabilitação pós-protética. Para que todas essas etapas sejam alcançadas e cumpridas com sucesso, é indispensável que o paciente apresente um bom estado geral, sem alterações que possam comprometer a reabilitação. A presença de sinais e/ou sintomas patológicos impedem uma boa evolução do processo. A presença de dor fantasma persistente prejudica a reabilitação do paciente amputado, em especial, o processo de aquisição de marcha com a prótese. Esta é a hipótese sugerida nesta revisão de literatura, que apresenta como objetivo relacionar a presença de dor fantasma com a aquisição de marcha com prótese em pacientes amputados de membro inferior. Após analisar os 11 estudos selecionados, concluiu-se que a dor fantasma tende a dificultar a marcha com prótese, mas que, quando a protetização é alcançada de maneira eficiente, pode influenciar no alívio da mesma.

PALAVRAS-CHAVE
Dor fantasma, amputados, marcha.

ABSTRACT
The amputees’ rehabilitation follows distinct phases: the patient’s general assessment, preparation for the prosthetic use and prosthetic fitting. For all these phases to be successful, it is essential for the patient to be in good health, with no alterations that would impair the rehabilitation. Pathological signs and/or symptoms that persist over time are an impediment for a good rehabilitation evolution. The presence of persistent phantom pain impairs the amputee’s rehabilitation, especially the gait acquisition with the prosthesis fitting. This is the hypothesis suggested in this literary review and its objective is to show the relationship between phantom pain and gait improvement with prosthesis use in lower limb amputees. After analyzing 11 studies selected from MEDLINE, LILACS and other electronic sources, we concluded that phantom pain tends to complicate the prosthesis gait improvement; however, if the prosthesis fitting is successful, it can minimize the painful phantom sensations.

KEYWORDS
Phantom pain, amputees, gait.

Received on June 21 2006, accepted on August 2006.

¹ Physical Therapist, Specialist in Hospital and Ambulatory Motor Physical Therapy applied to Orthopedics by the Federal University of São Paulo (UNIFESP)-Escola Paulista de Medicina (EPM).
² Physiatrist, Doctor in Medicine, Affiliated Professor, Head of the Amputation and Prosthesis Clinic and Group of the Discipline of Physiatrics of the Department of Orthopedics and Traumatology of UNIFESP-EPM, Technical Director of Escola São Francisco Rehabilitation Center.
³ Orthopedist, Associated Professor, Head of the Discipline of Physiatrics of the Department of Orthopedics and Traumatology of UNIFESP-EPM.
Introduction

The rehabilitational approach of an amputated patient must be instituted early, aiming more than the prosthesis adaptation, i.e., a functional recovery, providing professional re-adaptation conditions and social reintegration. The amputee frequently demands much from social services and specialized personnel in hospitals and the community. In addition to the social adaptation, the rehabilitation process involves the patient’s independent gait training and the use of gait aids.

The presence of alterations in the general conditions of the amputees can prevent the optimal progress of each one of the rehabilitation phases. Frequently, lower limb amputees develop phantom sensation and pain after the amputation, with impaired evolution of the therapeutic programs, especially the amputee’s prosthesis adaptation.

The term phantom limb was described for the first time by Mitchell in 1866, characterizing it as a ghost replica of the lost limb. The perception of non-painful sensations in the amputated part of the limb is defined as phantom sensation. It is such a real sensation that the amputee can try to stand up, walk or lean on the lost extremity.

The phantom pain is described as the presence of a painful sensation in the absent part of the amputated limb. describes that not only the phantom pain but also the phantom sensation typically appear within a few days after the amputation, and tend to decrease in frequency and duration with time.

Finally, the amputee can report amputation stump pain, which is the localized pain in the residual part of the amputated limb.

During the rehabilitation period, some complications can affect the amputee and delay, particularly, this last phase of the program. In 1986, Helm and cols. demonstrated that the presence of pain contributes to an unfavorable prognosis. When analyzing the functional status of patients after the amputation of lower limbs, they observed that it was necessary to stimulate the use of adequate prosthesis and control pain in order to achieve ideal functional levels.

Houghton and cols. studied the natural history of phantom pain and its association with rehabilitation and suggested that phantom pain must be considered as a determinant factor in the process of the amputee’s prosthesis adaptation.

A more recent study analyzed the use of prosthesis and the level of satisfaction of prosthesis users who were victims of traumatic amputations of the lower limbs. Although the majority of this population uses prosthesis, a large part (57%) is not satisfied with the supplied comfort. This fact may be related to the persistence of phantom pain, reported by 25% of the patients.

This review is justified, thus, based on the data supplied by literature that suggest the evidence of a negative association between the presence of phantom pain and the development of functional skills in amputated patients. Regarding lower limb amputees, their functional activity climax is to acquire independent gait. Hence, we chose to verify the influence of phantom pain on the process of gait acquisition in lower limb amputees.

Material and Methods

Procedures

The study was conducted based on the MEDLINE, LILACS, PUBMED and COCHRANE databases, from which all articles containing the key words pain, phantom, amputation, amputee and gait, in the Portuguese, Spanish and English languages, were selected. There were no restrictions regarding the publication period. The material was selected and analyzed carefully, through critical reading, aiming at finding any mention to the hypothesis suggested in this study.

Using combinations of the key words, we found 7 articles from LILACS, 258 articles from MEDLINE, 1605 articles from PUBMED and 12 literature reviews from COCHRANE. The abstracts of these articles were analyzed and 05 articles from LILACS, 48 articles from MEDLINE, 33 articles from PUBMED and 04 articles from COCHRANE were selected for reading and analysis in full. Additionally, 18 articles were obtained from non-electronic search and were also analyzed.

This bibliographic research included the studies that demonstrated any relation to phantom pain and the use of prosthesis for deambulation in lower limb amputees. Based on the inclusion criteria described in this study, 05 articles from MEDLINE, 03 articles from LILACS and 03 articles obtained from non-electronic search were selected to be incorporated in this review. However, it is important to clarify that none of the articles found or selected was directly related to phantom pain as an impediment for the acquisition of gait in lower limb amputees, but that this association can be drawn as a suggestion offered by the articles included in this review. The articles excluded from the review were those related to amputations without the process of prosthesis, or other issues about amputees that did not fit the association mentioned in the inclusion process.
Resultados

Literature studies showing authors’ names, year of publication, source of research, type of study and evaluation method of the phantom pain.

<table>
<thead>
<tr>
<th>Authors / Year of publication</th>
<th>Phantom Pain (PP)</th>
<th>Phantom sensation</th>
<th>Stump pain</th>
<th>PP at VAS</th>
<th>PP at MPQ</th>
<th>PP Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helm, Engel, Holm, Kristiansen e Rosendahl, 1986</td>
<td>71.3%</td>
<td>*</td>
<td>43.9%</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Houghton, Nicholls, Houghton, Saadah, McColl, 1994</td>
<td>78%</td>
<td>82%</td>
<td>*</td>
<td>1</td>
<td>VAS</td>
<td></td>
</tr>
<tr>
<td>Krane e Heller, 1995</td>
<td>83.3%</td>
<td>100%</td>
<td>*</td>
<td></td>
<td>Varni-Thompson Pediatric Pain Questionnaire</td>
<td></td>
</tr>
<tr>
<td>Wartan, Hamann, Wedley e McColl, 1997</td>
<td>55%</td>
<td>66.8%</td>
<td>56%</td>
<td>5.6 (0-10)</td>
<td>VAS</td>
<td></td>
</tr>
<tr>
<td>Ehde, Czerniecki, Smith, Campbell, Edwards, Jensen e Robinson, 2000</td>
<td>72%</td>
<td>79%</td>
<td>74.00%</td>
<td>5.1 (0-10)</td>
<td>VASSF-MPQ</td>
<td></td>
</tr>
<tr>
<td>Dillingham, Pezzin, MacKenzie e Burgess, 2001</td>
<td>72%</td>
<td>*</td>
<td>35.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hagberg e Bränemark, 2001</td>
<td>65%</td>
<td>*</td>
<td>51%</td>
<td></td>
<td>Swedish SF-36 Health Survey</td>
<td></td>
</tr>
<tr>
<td>Murray e Fox, 2002</td>
<td>100%</td>
<td>*</td>
<td></td>
<td>11.5 (0-20)</td>
<td>MPQ</td>
<td></td>
</tr>
<tr>
<td>Whyte e Carroll, 2002</td>
<td>100%</td>
<td>*</td>
<td></td>
<td>MPQ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borsje, Bosmans, Van der Schans, Geeritz e Dijkstra, 2004</td>
<td>62.5%</td>
<td>*</td>
<td></td>
<td></td>
<td>Groningen Questionnaire Problems after Arm Amputation</td>
<td></td>
</tr>
<tr>
<td>Whyte e Carroll, 2004</td>
<td>100%</td>
<td>*</td>
<td></td>
<td></td>
<td>Groningen Questionnaire Problems after Leg Amputation</td>
<td></td>
</tr>
</tbody>
</table>

* Not described in study. MPQ = McGill Pain Questionnaire. VAS = Visual Analogue Scale. GQPAA = Groningen Questionnaire Problems after Arm Amputation. GQPLA = The Groningen Questionnaire Problems after Leg Amputation.

Chart 4.

Literature studies showing authors’ names, year of publication, time of amputation (in years) and association with phantom pain (PP).

<table>
<thead>
<tr>
<th>Authors / Year of publication</th>
<th>Time of amputation</th>
<th>Association with PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helm, Engel, Holm, Kristiansen e Rosendahl, 1986</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Houghton, Nicholls, Houghton, 1994</td>
<td>5 to 20</td>
<td>PP decreased in intensity and frequency with time</td>
</tr>
<tr>
<td>Krane e Heller, 1995</td>
<td>Up to 10</td>
<td>PP decreased in intensity and frequency with time</td>
</tr>
<tr>
<td>Wartan, Hamann, Wedley e McColl, 1997</td>
<td>30 to 50</td>
<td>53% of the sample experienced decrease or resolution of PP</td>
</tr>
<tr>
<td>Ehde, Czerniecki, Smith, Campbell, Edwards, Jensen e Robinson, 2000</td>
<td>14.2</td>
<td>*</td>
</tr>
<tr>
<td>Dillingham, Pezzin, MacKenzie e Burgess, 2001</td>
<td>7.5</td>
<td>*</td>
</tr>
<tr>
<td>Hagberg e Bränemark, 2001</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Murray e Fox, 2002</td>
<td>13.15</td>
<td></td>
</tr>
<tr>
<td>Whyte e Carroll, 2002</td>
<td>13.15</td>
<td></td>
</tr>
<tr>
<td>Borsje, Bosmans, Van der Schans, Geeritz e Dijkstra, 2004</td>
<td>*</td>
<td>Patients with PP have more recent amputations than those without</td>
</tr>
<tr>
<td>Whyte e Carroll, 2004</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Not described in the study
Discussion

When analyzing the methodology used to organize the sample assessment, it can be observed that most of the studies used validated questionnaires. Only three articles\(^6,11,13\) cited questionnaires developed by the authors and which, therefore, were not validated instruments recognized by the world’s literature. However, regarding phantom pain, it seems that in all the studies the patients
were well informed and could answer coherently to the questions regarding the subject, which contributed for the reliable reporting of phantom pain, stump pain and phantom sensation incidence.

As the study sought to correlate phantom pain and the process of gait acquisition in amputees, the search for the articles were directed towards those that dealt with lower limb amputees. As it can be observed in Chart 2, most of the studies supply data on such population. However, some studies comprehend not only lower limb but also upper limb amputees.

The mixed articles regarding the amputated extremity make important references to the pain and/or use of prosthesis in lower limb amputees, and were therefore included in this review.

Chart 2 shows also the causes of amputation in the samples from each study. The large incidence of traumatic amputations can be perceived. Such incidence might be related to the relatively young population and the large number of males of which the studies consist. The association between the cause of the amputation and the amputee’s gender is quite marked in the study by Dillinghan; their sample consists exclusively of amputees due to traumatic causes and 87% of them are males.

The incidence of phantom pain in each study can be observed in Chart 3. Although the range of 55% to 100% of phantom pain incidence can be considered a large one, the important thing is that this incidence is always above 50%, i.e., more than 50% of the sample of each study reported phantom pain. It is also noteworthy that in 8 of the 11 studies presented, phantom pain was experienced by more than 70% of the population. In three of them, 100% of the sample reported phantom pain; however, these studies must not be considered when one intends to analyze the incidence of phantom pain in the general population, as the presence of phantom pain was considered an inclusion criterion for them, i.e., the participants were not chosen randomly regarding the presence of phantom pain.

When one analyzes the prevalence of phantom pain, it must be observed which points of view were considered to evaluate the frequency. Some studies evaluate the presence of phantom pain by asking the participants to choose between “yes” or “no” to express whether they feel phantom pain or not, respectively. However, a question remains: amputees that experience phantom pain once or twice a year must be classified equally to those who always present phantom pain?

Four studies showed an interesting association between the incidence of phantom pain and phantom sensation. It was observed that whenever the phantom sensation was reported, it was more significant than the phantom pain. Regarding the stump pain, there was no constant in the association of the latter with phantom pain, as shown in Chart 3.

One-third of the studies used the Visual Analog Scale (VAS) to measure phantom pain. This scale consists of a horizontal line, divided in 10 equal-sized spaces, scored from left to right from 0 to 10. The individual being assessed must be advised that 0 (zero) means absence of pain and 10 (ten) means the worst pain ever felt, and that the pain augments as number order increases.

The use of the same assessment resource by several studies makes the analysis of the results easier, as one can be sure that the data presented were collected in exactly the same manner. Thus, of the four studies that showed the phantom pain score at the VAS, 3 presented very close scores, which represents a moderate-intensity pain and is in agreement with other published studies.

A moderate-intensity pain was also observed in a study that evaluated this issue through the McGill Pain Questionnaire (MPQ), i.e., within a range of 0 (zero) to 20 (twenty), the average intensity of phantom pain was 11.5. This shows that even when different assessment tools are used, the data obtained could be correlated and what is more important, that such data were in agreement. The MPQ was used by 25% of the studies and must be recognized for its importance.

Chart 4 allows the correlation of phantom pain with the time of amputation. This subject has been quite often reported, however, it is not completely clarified. Some studies show that phantom pain is more common in the immediate postoperative period. According to this review, of the 5 articles that referred to the subject, four reported that phantom pain tends to decrease in intensity and/or frequency with time.

Chart 5 shows the influence of phantom pain on the prosthesis use. As the process of prosthetization usually finalizes the amputee’s rehabilitation, it is of crucial importance to try to clarify any factor that can impair this treatment phase. When trying to confirm that phantom pain would be an obstacle to the increment of gait with prosthesis for the amputee, the only studies found were those that suggested this statement is true, but no specific study on this matter was found.

However, the simple fact of observing that studies with different objectives suggest the existence of such question is a predictive factor of the need for further studies that can clarify the issue.

Some findings are then discussed, which suggest the negative influence of phantom pain on prosthesis use. Two studies show that phantom pain was responsible for the interruption of the prosthesis use. In one case, 38% of the sample reported not using prosthesis due to phantom pain, whereas another study showed that only 11% in a sample of 80 amputees reported the same problem.

To complement these data, a study carried out in the UK, which proposed the analysis of the association between prosthesis and body image satisfaction in lower limb amputees, as well as its variations between the genders, concluded that phantom pain interferes with the amputees’ prosthetization process, as it decreases the quality of life of these individuals. According to the authors, the patients that better face the loss of a limb suffer less phantom pain.

Regarding quality of life, Hagberg and Branemark published a study, in which they state that the traumatic transfemoral amputation has an evident impact on quality of life, and thus, important problems arise during the prosthesis use training.

Some studies, although they did not correlate phantom pain directly to the use of prosthesis, showed that phantom pain negatively influence the amputees’ functionality. The physical debilitation after the amputation is permanent and can be overwhelming: in many cases the amputation generates a massive dependence of the
patient in relation to other people21.

Considering that the samples in these studies consisted of lower limb amputees, it is obvious that these individuals’ functionality impairment is related to deambulation, which directs it to prosthetization. For most of the amputees, daily mobility is impaired after the amputation. When Helm and cols.8 investigated the functional capacity and the social dependence of lower limb amputees, they observed that the absence of phantom pain contributes favorably to the functional prognosis after the amputation. These authors considered that an adequate prosthetic training and enough analgesic prescription are necessary for the amputee to achieve good functional levels.

Houghton and cols.9 associated phantom pain with rehabilitation. According to their study, although only 22\% of a sample of 176 lower limb amputees considered phantom pain a hindrance to rehabilitation, when the data collected were analyzed globally, phantom pain was found to be a negative influence factor in the rehabilitation of the amputee on a prosthetic limb.

Regarding satisfaction with the prosthesis, a study12 concluded that amputees with phantom pain reported a lower level of satisfaction with the use of prosthesis when compared to the other amputees. Even patients with stump pain were more adapted to the use of prosthesis than patients with phantom pain; this fact is yet to be clarified, according to the authors of the study.

Some studies have demonstrated alterations in phantom pain caused by the use of prosthesis. In one case11, although the use of prosthesis did not present a significant difference between the amputees that reported phantom pain and those who did not, 8\% of the sample experienced worsening of the phantom pain after the prosthesis. On the other hand, a study reported improvement in the phantom pain after the use of prosthesis and the authors concluded that, the longer the hours spent with the prosthesis daily, the lower were the levels of phantom pain15. Although it was carried out exclusively with upper limb amputees, the study by Weiss and cols.22 defends the theory of the increment of stump use, according to which, the increased use of the residual limb after the amputation can reduce or eliminate phantom pain.

After this review on the probable interference of phantom pain on gait acquisition in lower limb amputees, we observed that several authors have used validated tools to assess the pain symptomatology in amputees, and thus, it can be affirmed that phantom pain is a common and prominent symptom in this population. Additionally, it interferes with functionality, and consequently, with the amputee’s quality of life23.

Conclusion

After the analysis of the selected articles, it can be observed that phantom pain tends to impair the prosthetization process in amputees. However, when this process occurs, it can be a determinant factor in the decrease of phantom pain.

References